3.502 \(\int \frac {1}{(a+b \sec (c+d x))^2} \, dx\)

Optimal. Leaf size=109 \[ -\frac {2 b \left (2 a^2-b^2\right ) \tanh ^{-1}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{a^2 d (a-b)^{3/2} (a+b)^{3/2}}+\frac {b^2 \tan (c+d x)}{a d \left (a^2-b^2\right ) (a+b \sec (c+d x))}+\frac {x}{a^2} \]

[Out]

x/a^2-2*b*(2*a^2-b^2)*arctanh((a-b)^(1/2)*tan(1/2*d*x+1/2*c)/(a+b)^(1/2))/a^2/(a-b)^(3/2)/(a+b)^(3/2)/d+b^2*ta
n(d*x+c)/a/(a^2-b^2)/d/(a+b*sec(d*x+c))

________________________________________________________________________________________

Rubi [A]  time = 0.17, antiderivative size = 109, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.417, Rules used = {3785, 3919, 3831, 2659, 208} \[ -\frac {2 b \left (2 a^2-b^2\right ) \tanh ^{-1}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{a^2 d (a-b)^{3/2} (a+b)^{3/2}}+\frac {b^2 \tan (c+d x)}{a d \left (a^2-b^2\right ) (a+b \sec (c+d x))}+\frac {x}{a^2} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Sec[c + d*x])^(-2),x]

[Out]

x/a^2 - (2*b*(2*a^2 - b^2)*ArcTanh[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/(a^2*(a - b)^(3/2)*(a + b)^(3/
2)*d) + (b^2*Tan[c + d*x])/(a*(a^2 - b^2)*d*(a + b*Sec[c + d*x]))

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 2659

Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x
]}, Dist[(2*e)/d, Subst[Int[1/(a + b + (a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}
, x] && NeQ[a^2 - b^2, 0]

Rule 3785

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> Simp[(b^2*Cot[c + d*x]*(a + b*Csc[c + d*x])^(n +
 1))/(a*d*(n + 1)*(a^2 - b^2)), x] + Dist[1/(a*(n + 1)*(a^2 - b^2)), Int[(a + b*Csc[c + d*x])^(n + 1)*Simp[(a^
2 - b^2)*(n + 1) - a*b*(n + 1)*Csc[c + d*x] + b^2*(n + 2)*Csc[c + d*x]^2, x], x], x] /; FreeQ[{a, b, c, d}, x]
 && NeQ[a^2 - b^2, 0] && LtQ[n, -1] && IntegerQ[2*n]

Rule 3831

Int[csc[(e_.) + (f_.)*(x_)]/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[1/b, Int[1/(1 + (a*Sin[e
 + f*x])/b), x], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3919

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[(c*x)/a,
x] - Dist[(b*c - a*d)/a, Int[Csc[e + f*x]/(a + b*Csc[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[
b*c - a*d, 0]

Rubi steps

\begin {align*} \int \frac {1}{(a+b \sec (c+d x))^2} \, dx &=\frac {b^2 \tan (c+d x)}{a \left (a^2-b^2\right ) d (a+b \sec (c+d x))}-\frac {\int \frac {-a^2+b^2+a b \sec (c+d x)}{a+b \sec (c+d x)} \, dx}{a \left (a^2-b^2\right )}\\ &=\frac {x}{a^2}+\frac {b^2 \tan (c+d x)}{a \left (a^2-b^2\right ) d (a+b \sec (c+d x))}-\frac {\left (b \left (2 a^2-b^2\right )\right ) \int \frac {\sec (c+d x)}{a+b \sec (c+d x)} \, dx}{a^2 \left (a^2-b^2\right )}\\ &=\frac {x}{a^2}+\frac {b^2 \tan (c+d x)}{a \left (a^2-b^2\right ) d (a+b \sec (c+d x))}-\frac {\left (2 a^2-b^2\right ) \int \frac {1}{1+\frac {a \cos (c+d x)}{b}} \, dx}{a^2 \left (a^2-b^2\right )}\\ &=\frac {x}{a^2}+\frac {b^2 \tan (c+d x)}{a \left (a^2-b^2\right ) d (a+b \sec (c+d x))}-\frac {\left (2 \left (2 a^2-b^2\right )\right ) \operatorname {Subst}\left (\int \frac {1}{1+\frac {a}{b}+\left (1-\frac {a}{b}\right ) x^2} \, dx,x,\tan \left (\frac {1}{2} (c+d x)\right )\right )}{a^2 \left (a^2-b^2\right ) d}\\ &=\frac {x}{a^2}-\frac {2 b \left (2 a^2-b^2\right ) \tanh ^{-1}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{a^2 (a-b)^{3/2} (a+b)^{3/2} d}+\frac {b^2 \tan (c+d x)}{a \left (a^2-b^2\right ) d (a+b \sec (c+d x))}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.48, size = 138, normalized size = 1.27 \[ \frac {\frac {b \left (\left (a^2-b^2\right ) (c+d x)+a b \sin (c+d x)\right )+a \left (a^2-b^2\right ) (c+d x) \cos (c+d x)}{a \cos (c+d x)+b}-\frac {2 b \left (b^2-2 a^2\right ) \tanh ^{-1}\left (\frac {(b-a) \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a^2-b^2}}\right )}{\sqrt {a^2-b^2}}}{a^2 d (a-b) (a+b)} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Sec[c + d*x])^(-2),x]

[Out]

((-2*b*(-2*a^2 + b^2)*ArcTanh[((-a + b)*Tan[(c + d*x)/2])/Sqrt[a^2 - b^2]])/Sqrt[a^2 - b^2] + (a*(a^2 - b^2)*(
c + d*x)*Cos[c + d*x] + b*((a^2 - b^2)*(c + d*x) + a*b*Sin[c + d*x]))/(b + a*Cos[c + d*x]))/(a^2*(a - b)*(a +
b)*d)

________________________________________________________________________________________

fricas [B]  time = 0.54, size = 484, normalized size = 4.44 \[ \left [\frac {2 \, {\left (a^{5} - 2 \, a^{3} b^{2} + a b^{4}\right )} d x \cos \left (d x + c\right ) + 2 \, {\left (a^{4} b - 2 \, a^{2} b^{3} + b^{5}\right )} d x + {\left (2 \, a^{2} b^{2} - b^{4} + {\left (2 \, a^{3} b - a b^{3}\right )} \cos \left (d x + c\right )\right )} \sqrt {a^{2} - b^{2}} \log \left (\frac {2 \, a b \cos \left (d x + c\right ) - {\left (a^{2} - 2 \, b^{2}\right )} \cos \left (d x + c\right )^{2} - 2 \, \sqrt {a^{2} - b^{2}} {\left (b \cos \left (d x + c\right ) + a\right )} \sin \left (d x + c\right ) + 2 \, a^{2} - b^{2}}{a^{2} \cos \left (d x + c\right )^{2} + 2 \, a b \cos \left (d x + c\right ) + b^{2}}\right ) + 2 \, {\left (a^{3} b^{2} - a b^{4}\right )} \sin \left (d x + c\right )}{2 \, {\left ({\left (a^{7} - 2 \, a^{5} b^{2} + a^{3} b^{4}\right )} d \cos \left (d x + c\right ) + {\left (a^{6} b - 2 \, a^{4} b^{3} + a^{2} b^{5}\right )} d\right )}}, \frac {{\left (a^{5} - 2 \, a^{3} b^{2} + a b^{4}\right )} d x \cos \left (d x + c\right ) + {\left (a^{4} b - 2 \, a^{2} b^{3} + b^{5}\right )} d x - {\left (2 \, a^{2} b^{2} - b^{4} + {\left (2 \, a^{3} b - a b^{3}\right )} \cos \left (d x + c\right )\right )} \sqrt {-a^{2} + b^{2}} \arctan \left (-\frac {\sqrt {-a^{2} + b^{2}} {\left (b \cos \left (d x + c\right ) + a\right )}}{{\left (a^{2} - b^{2}\right )} \sin \left (d x + c\right )}\right ) + {\left (a^{3} b^{2} - a b^{4}\right )} \sin \left (d x + c\right )}{{\left (a^{7} - 2 \, a^{5} b^{2} + a^{3} b^{4}\right )} d \cos \left (d x + c\right ) + {\left (a^{6} b - 2 \, a^{4} b^{3} + a^{2} b^{5}\right )} d}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*sec(d*x+c))^2,x, algorithm="fricas")

[Out]

[1/2*(2*(a^5 - 2*a^3*b^2 + a*b^4)*d*x*cos(d*x + c) + 2*(a^4*b - 2*a^2*b^3 + b^5)*d*x + (2*a^2*b^2 - b^4 + (2*a
^3*b - a*b^3)*cos(d*x + c))*sqrt(a^2 - b^2)*log((2*a*b*cos(d*x + c) - (a^2 - 2*b^2)*cos(d*x + c)^2 - 2*sqrt(a^
2 - b^2)*(b*cos(d*x + c) + a)*sin(d*x + c) + 2*a^2 - b^2)/(a^2*cos(d*x + c)^2 + 2*a*b*cos(d*x + c) + b^2)) + 2
*(a^3*b^2 - a*b^4)*sin(d*x + c))/((a^7 - 2*a^5*b^2 + a^3*b^4)*d*cos(d*x + c) + (a^6*b - 2*a^4*b^3 + a^2*b^5)*d
), ((a^5 - 2*a^3*b^2 + a*b^4)*d*x*cos(d*x + c) + (a^4*b - 2*a^2*b^3 + b^5)*d*x - (2*a^2*b^2 - b^4 + (2*a^3*b -
 a*b^3)*cos(d*x + c))*sqrt(-a^2 + b^2)*arctan(-sqrt(-a^2 + b^2)*(b*cos(d*x + c) + a)/((a^2 - b^2)*sin(d*x + c)
)) + (a^3*b^2 - a*b^4)*sin(d*x + c))/((a^7 - 2*a^5*b^2 + a^3*b^4)*d*cos(d*x + c) + (a^6*b - 2*a^4*b^3 + a^2*b^
5)*d)]

________________________________________________________________________________________

giac [A]  time = 0.20, size = 179, normalized size = 1.64 \[ -\frac {\frac {2 \, b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{{\left (a^{3} - a b^{2}\right )} {\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - a - b\right )}} + \frac {2 \, {\left (2 \, a^{2} b - b^{3}\right )} {\left (\pi \left \lfloor \frac {d x + c}{2 \, \pi } + \frac {1}{2} \right \rfloor \mathrm {sgn}\left (-2 \, a + 2 \, b\right ) + \arctan \left (-\frac {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{\sqrt {-a^{2} + b^{2}}}\right )\right )}}{{\left (a^{4} - a^{2} b^{2}\right )} \sqrt {-a^{2} + b^{2}}} - \frac {d x + c}{a^{2}}}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*sec(d*x+c))^2,x, algorithm="giac")

[Out]

-(2*b^2*tan(1/2*d*x + 1/2*c)/((a^3 - a*b^2)*(a*tan(1/2*d*x + 1/2*c)^2 - b*tan(1/2*d*x + 1/2*c)^2 - a - b)) + 2
*(2*a^2*b - b^3)*(pi*floor(1/2*(d*x + c)/pi + 1/2)*sgn(-2*a + 2*b) + arctan(-(a*tan(1/2*d*x + 1/2*c) - b*tan(1
/2*d*x + 1/2*c))/sqrt(-a^2 + b^2)))/((a^4 - a^2*b^2)*sqrt(-a^2 + b^2)) - (d*x + c)/a^2)/d

________________________________________________________________________________________

maple [B]  time = 0.49, size = 204, normalized size = 1.87 \[ -\frac {2 b^{2} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{d a \left (a^{2}-b^{2}\right ) \left (a \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b -a -b \right )}-\frac {4 b \arctanh \left (\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (a -b \right )}{\sqrt {\left (a -b \right ) \left (a +b \right )}}\right )}{d \left (a -b \right ) \left (a +b \right ) \sqrt {\left (a -b \right ) \left (a +b \right )}}+\frac {2 b^{3} \arctanh \left (\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (a -b \right )}{\sqrt {\left (a -b \right ) \left (a +b \right )}}\right )}{d \,a^{2} \left (a -b \right ) \left (a +b \right ) \sqrt {\left (a -b \right ) \left (a +b \right )}}+\frac {2 \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d \,a^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+b*sec(d*x+c))^2,x)

[Out]

-2/d*b^2/a/(a^2-b^2)*tan(1/2*d*x+1/2*c)/(a*tan(1/2*d*x+1/2*c)^2-tan(1/2*d*x+1/2*c)^2*b-a-b)-4/d*b/(a-b)/(a+b)/
((a-b)*(a+b))^(1/2)*arctanh(tan(1/2*d*x+1/2*c)*(a-b)/((a-b)*(a+b))^(1/2))+2/d*b^3/a^2/(a-b)/(a+b)/((a-b)*(a+b)
)^(1/2)*arctanh(tan(1/2*d*x+1/2*c)*(a-b)/((a-b)*(a+b))^(1/2))+2/d/a^2*arctan(tan(1/2*d*x+1/2*c))

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*sec(d*x+c))^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(4*a^2-4*b^2>0)', see `assume?`
 for more details)Is 4*a^2-4*b^2 positive or negative?

________________________________________________________________________________________

mupad [B]  time = 6.67, size = 2886, normalized size = 26.48 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a + b/cos(c + d*x))^2,x)

[Out]

(2*atan((((((32*(2*a^8*b - a^9 + a^4*b^5 - 3*a^6*b^3 + a^7*b^2))/(a^5*b + a^6 - a^3*b^3 - a^4*b^2) - (tan(c/2
+ (d*x)/2)*(2*a^9*b - 2*a^4*b^6 + 2*a^5*b^5 + 4*a^6*b^4 - 4*a^7*b^3 - 2*a^8*b^2)*32i)/(a^2*(a^4*b + a^5 - a^2*
b^3 - a^3*b^2)))*1i)/a^2 + (32*tan(c/2 + (d*x)/2)*(a^6 - 2*a^5*b - 2*a*b^5 + 2*b^6 - 5*a^2*b^4 + 4*a^3*b^3 + 3
*a^4*b^2))/(a^4*b + a^5 - a^2*b^3 - a^3*b^2))/a^2 - ((((32*(2*a^8*b - a^9 + a^4*b^5 - 3*a^6*b^3 + a^7*b^2))/(a
^5*b + a^6 - a^3*b^3 - a^4*b^2) + (tan(c/2 + (d*x)/2)*(2*a^9*b - 2*a^4*b^6 + 2*a^5*b^5 + 4*a^6*b^4 - 4*a^7*b^3
 - 2*a^8*b^2)*32i)/(a^2*(a^4*b + a^5 - a^2*b^3 - a^3*b^2)))*1i)/a^2 - (32*tan(c/2 + (d*x)/2)*(a^6 - 2*a^5*b -
2*a*b^5 + 2*b^6 - 5*a^2*b^4 + 4*a^3*b^3 + 3*a^4*b^2))/(a^4*b + a^5 - a^2*b^3 - a^3*b^2))/a^2)/((64*(2*a^4*b -
a*b^4 + b^5 - 3*a^2*b^3 + 2*a^3*b^2))/(a^5*b + a^6 - a^3*b^3 - a^4*b^2) + (((((32*(2*a^8*b - a^9 + a^4*b^5 - 3
*a^6*b^3 + a^7*b^2))/(a^5*b + a^6 - a^3*b^3 - a^4*b^2) - (tan(c/2 + (d*x)/2)*(2*a^9*b - 2*a^4*b^6 + 2*a^5*b^5
+ 4*a^6*b^4 - 4*a^7*b^3 - 2*a^8*b^2)*32i)/(a^2*(a^4*b + a^5 - a^2*b^3 - a^3*b^2)))*1i)/a^2 + (32*tan(c/2 + (d*
x)/2)*(a^6 - 2*a^5*b - 2*a*b^5 + 2*b^6 - 5*a^2*b^4 + 4*a^3*b^3 + 3*a^4*b^2))/(a^4*b + a^5 - a^2*b^3 - a^3*b^2)
)*1i)/a^2 + (((((32*(2*a^8*b - a^9 + a^4*b^5 - 3*a^6*b^3 + a^7*b^2))/(a^5*b + a^6 - a^3*b^3 - a^4*b^2) + (tan(
c/2 + (d*x)/2)*(2*a^9*b - 2*a^4*b^6 + 2*a^5*b^5 + 4*a^6*b^4 - 4*a^7*b^3 - 2*a^8*b^2)*32i)/(a^2*(a^4*b + a^5 -
a^2*b^3 - a^3*b^2)))*1i)/a^2 - (32*tan(c/2 + (d*x)/2)*(a^6 - 2*a^5*b - 2*a*b^5 + 2*b^6 - 5*a^2*b^4 + 4*a^3*b^3
 + 3*a^4*b^2))/(a^4*b + a^5 - a^2*b^3 - a^3*b^2))*1i)/a^2)))/(a^2*d) + (b*atan(((b*((32*tan(c/2 + (d*x)/2)*(a^
6 - 2*a^5*b - 2*a*b^5 + 2*b^6 - 5*a^2*b^4 + 4*a^3*b^3 + 3*a^4*b^2))/(a^4*b + a^5 - a^2*b^3 - a^3*b^2) + (b*(2*
a^2 - b^2)*((32*(2*a^8*b - a^9 + a^4*b^5 - 3*a^6*b^3 + a^7*b^2))/(a^5*b + a^6 - a^3*b^3 - a^4*b^2) - (32*b*tan
(c/2 + (d*x)/2)*(2*a^2 - b^2)*((a + b)^3*(a - b)^3)^(1/2)*(2*a^9*b - 2*a^4*b^6 + 2*a^5*b^5 + 4*a^6*b^4 - 4*a^7
*b^3 - 2*a^8*b^2))/((a^4*b + a^5 - a^2*b^3 - a^3*b^2)*(a^8 - a^2*b^6 + 3*a^4*b^4 - 3*a^6*b^2)))*((a + b)^3*(a
- b)^3)^(1/2))/(a^8 - a^2*b^6 + 3*a^4*b^4 - 3*a^6*b^2))*(2*a^2 - b^2)*((a + b)^3*(a - b)^3)^(1/2)*1i)/(a^8 - a
^2*b^6 + 3*a^4*b^4 - 3*a^6*b^2) + (b*((32*tan(c/2 + (d*x)/2)*(a^6 - 2*a^5*b - 2*a*b^5 + 2*b^6 - 5*a^2*b^4 + 4*
a^3*b^3 + 3*a^4*b^2))/(a^4*b + a^5 - a^2*b^3 - a^3*b^2) - (b*(2*a^2 - b^2)*((32*(2*a^8*b - a^9 + a^4*b^5 - 3*a
^6*b^3 + a^7*b^2))/(a^5*b + a^6 - a^3*b^3 - a^4*b^2) + (32*b*tan(c/2 + (d*x)/2)*(2*a^2 - b^2)*((a + b)^3*(a -
b)^3)^(1/2)*(2*a^9*b - 2*a^4*b^6 + 2*a^5*b^5 + 4*a^6*b^4 - 4*a^7*b^3 - 2*a^8*b^2))/((a^4*b + a^5 - a^2*b^3 - a
^3*b^2)*(a^8 - a^2*b^6 + 3*a^4*b^4 - 3*a^6*b^2)))*((a + b)^3*(a - b)^3)^(1/2))/(a^8 - a^2*b^6 + 3*a^4*b^4 - 3*
a^6*b^2))*(2*a^2 - b^2)*((a + b)^3*(a - b)^3)^(1/2)*1i)/(a^8 - a^2*b^6 + 3*a^4*b^4 - 3*a^6*b^2))/((64*(2*a^4*b
 - a*b^4 + b^5 - 3*a^2*b^3 + 2*a^3*b^2))/(a^5*b + a^6 - a^3*b^3 - a^4*b^2) + (b*((32*tan(c/2 + (d*x)/2)*(a^6 -
 2*a^5*b - 2*a*b^5 + 2*b^6 - 5*a^2*b^4 + 4*a^3*b^3 + 3*a^4*b^2))/(a^4*b + a^5 - a^2*b^3 - a^3*b^2) + (b*(2*a^2
 - b^2)*((32*(2*a^8*b - a^9 + a^4*b^5 - 3*a^6*b^3 + a^7*b^2))/(a^5*b + a^6 - a^3*b^3 - a^4*b^2) - (32*b*tan(c/
2 + (d*x)/2)*(2*a^2 - b^2)*((a + b)^3*(a - b)^3)^(1/2)*(2*a^9*b - 2*a^4*b^6 + 2*a^5*b^5 + 4*a^6*b^4 - 4*a^7*b^
3 - 2*a^8*b^2))/((a^4*b + a^5 - a^2*b^3 - a^3*b^2)*(a^8 - a^2*b^6 + 3*a^4*b^4 - 3*a^6*b^2)))*((a + b)^3*(a - b
)^3)^(1/2))/(a^8 - a^2*b^6 + 3*a^4*b^4 - 3*a^6*b^2))*(2*a^2 - b^2)*((a + b)^3*(a - b)^3)^(1/2))/(a^8 - a^2*b^6
 + 3*a^4*b^4 - 3*a^6*b^2) - (b*((32*tan(c/2 + (d*x)/2)*(a^6 - 2*a^5*b - 2*a*b^5 + 2*b^6 - 5*a^2*b^4 + 4*a^3*b^
3 + 3*a^4*b^2))/(a^4*b + a^5 - a^2*b^3 - a^3*b^2) - (b*(2*a^2 - b^2)*((32*(2*a^8*b - a^9 + a^4*b^5 - 3*a^6*b^3
 + a^7*b^2))/(a^5*b + a^6 - a^3*b^3 - a^4*b^2) + (32*b*tan(c/2 + (d*x)/2)*(2*a^2 - b^2)*((a + b)^3*(a - b)^3)^
(1/2)*(2*a^9*b - 2*a^4*b^6 + 2*a^5*b^5 + 4*a^6*b^4 - 4*a^7*b^3 - 2*a^8*b^2))/((a^4*b + a^5 - a^2*b^3 - a^3*b^2
)*(a^8 - a^2*b^6 + 3*a^4*b^4 - 3*a^6*b^2)))*((a + b)^3*(a - b)^3)^(1/2))/(a^8 - a^2*b^6 + 3*a^4*b^4 - 3*a^6*b^
2))*(2*a^2 - b^2)*((a + b)^3*(a - b)^3)^(1/2))/(a^8 - a^2*b^6 + 3*a^4*b^4 - 3*a^6*b^2)))*(2*a^2 - b^2)*((a + b
)^3*(a - b)^3)^(1/2)*2i)/(d*(a^8 - a^2*b^6 + 3*a^4*b^4 - 3*a^6*b^2)) - (2*b^2*tan(c/2 + (d*x)/2))/(d*(a + b)*(
a*b - a^2)*(a + b - tan(c/2 + (d*x)/2)^2*(a - b)))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\left (a + b \sec {\left (c + d x \right )}\right )^{2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*sec(d*x+c))**2,x)

[Out]

Integral((a + b*sec(c + d*x))**(-2), x)

________________________________________________________________________________________